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Mechanics and form of the maize leaf: in vivo 
qualification of flexural behaviour 
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An in vivo flexural test is designed and conducted on maize leaves. Data processing is based on 
a local structural definition of longitudinal leaf suppleness, which originates in the theory of pure 
plane bending of initially curved beams, in large displacements. A specific procedure for curvature 
and suppleness computation is methodologically discussed. The results presented concern only 
the elastic flexural behaviour of the leaf (which could be characterized in 59% of the tested 
leaves). A quasi-exponential increase in suppleness, from the base to the tip of the leaf, was 
always experienced. It is demonstrated that the midrib plays a major part in bending stiffness. 
Going up the longitudinal leaf form, it is shown that self weight related elastic bending strains only 
account for one-third of the actual curvature, 

1. I n t r o d u c t i o n  
Leaves are the major surfaces of light interception and 
gas exchange in plants. A study of their spatial display 
(their habit) is thus of interest in functional ecology. In 
particular, leaves must be stiff enough to stand their 
own weight without excessive bending [1, 2]. The 
maize leaf is not held by a stem like organ (petiole), but 
is a shell-shaped self-supporting structure (as are 
many monocotyledon leaves [1-1), reinforced by a cen- 
tral midrib*. Dealing with such a complicated struc- 
ture, there may be many putative phenomena that 
could a priori be addressed as implicated in its mech- 
anical behaviour: 

1. Is this behaviour mainly elastic, or do more com- 
plex rheologies have to be retained, as has been re- 
ported for other biological materials ([3] among 
others)? 

2. Are shell structural effects dominant or does the 
midrib account for most of the rigidity? 

3. Are there some active plant reactions [4]? 
Thus, as always the case in biomechanics [5], much of 
the challenge is the identification of the relevant phe- 
nomena for the particular problem under concern 
(i.e. the habit of the maize leaf). A way through, is to 
begin with an experimental study of the integrated 
structure (i.e. in this case, the whole leaf). Moreover, it 
is of particular interest to experiment on the plant in 

vivo because: 

1. There are many experimental difficulties and 
possibilities of artifacts in the more classical testing 
procedures on specimens [6] (e.g. possible decay of the 
living material), 

2. it allows assessment of possible plant reactions 
(e.g. [4, 7, 8]). 

*Plant Biomechanics Group, U. R. de Bioelimatologie, INRA, 78850 Thiverval-Grignon, France 
*Biological terms are defined in the Appendix. 

Although there are some reports of experimental 
mechanical studies on plant leaves [1, 2, 9-11], none 
of them deal with in vivo testing. The present paper is 
concerned with the design of such an in vivo bending 
test and its use for the analysis of the mechanical 
behaviour of plant leaves. Its results, and the insights 
they give about the mechanics of the maize leaf habit, 
are presented and discussed. 

2. General morphology of the maize leaf 
The maize leaf is a slender structure, with bilateral 
symmetry. Its size varies with leaf rank (and growing 
conditions). It is composed of a central thickened, 
curved midrib; and of a much thinner part, on both 
sides of the midrib, which will henceforth be referred 
to as the lamina (Fig..1). Previous studies [12, 13-1 
showed that the midrib usually lies within the vertical 
plane of symmetry. The shape of the curve made by 
the central line of the midrib in this vertical plane is 
often called, in botany, the leaf habit. It is the deter- 
mination of this habit which is the ultimate goal of this 
study. Notice that the midrib has a strong taper and 
that the lamina is usually wavy, although the amount 
of waviness may vary with leaf rank and age. 

Details about the internal material structure (ana- 
tomy) of gramineous (i.e. similar to maize) leaves can 
be found in [1, 10]. Just recall here that it is a com- 
posite cellular material. 

3. Definition of bending suppleness and 
design of the test 

From a mechanical point of view, the maize leaf is 
a complex three-dimensional structure. However, it is 
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Figure 1 General morphology of the mature maize leaf (re-drawn 
from [16]). 

a slender one; with its longitudinal dimension being 
much larger than the others. Moreover, investigations 
here are primarily interested in the longitudinal 
flexural behaviour, (as it is most likely to be related 
to leaf habit). Work has, thus, been focused on the 
bending behaviour of a particular line within the 
structure, the central line of the midrib. When the 
whole structure is vertically loaded, this line remains 
within the vertical x-y plane (as a consequence of 
symmetry). Thus, a very simple fiexural plane test can 
be designed. Moreover, (structure related) bending 
suppleness [14] can be defined at a given material 
point within the central line as: 

8(C) 
Sf = (1) 

8(M=) 

where Sfis the plane bending suppleness (its reciprocal 
being the stiffness), 8(C) and 8(M=) are, respectively, 
the variation of curvature and the variation of the 
bending moment between the initial and final equilib- 
rium states, at a given material point. Such formula 
applies to the case of initially pre-loaded and curved 
beams (with small curvatures~). It takes into account 
large displacements (as M~ in the final equilibrium 
state is determined in the final strained geometry). 
This is, of course, only one of the many criteria for 
structural suppleness that could be designed. It can be 
interpreted as the suppleness of an "equivalent homo- 
geneous beam", in pure bending, in which case the 
construction of Sf from cross-sectional properties 
gives the classical equation: 

Sf = (Eeq I=)- 1 (2) 

where Eeq is the longitudinal Young's modulus of the 
equivalent material and I= is the second moment of 
inertia around the z axis. At this point, it might be 
a matter of surprise to note that Equation 1 differs 
from the classical strength of material formula for 
beams (Sf= C/Mz). However, the former is just a re- 
striction of the latter, in problems of initially straight 
beams where, moreover, the influence of the initial 

mass is negligible (i.e. either initially unloaded beams 
or small displacement cases). Lastly, it should be re- 
called here that the aim is somewhat different from 
that of usual mechanical tests. The usual purpose of 
mechanical tests is to obtain rheological equations of 
the constitutive material (independently of any ge- 
ometry). In this case, however, the test is directly 
applied to the mechanical structure of interest, so that 
it is used here more for structural analysis than for real 
rheological testing. 

4. Mater ia ls  and methods 4.1. Plant material 
Maize plants (Zea mays cv DEA) were raised from 
seeds during late spring and summer in Bordeaux, 
using outdoor pots. Care was taken to prevent water 
or mineral deficiency. To obtain a homogeneous ma- 
terial, the leaves were tested when they were mature 
(i.e. those no longer growing, and with at least three 
younger entire leaves above [15]), and when the plant 
had the same phenological age (male flowering). 
Moreover, to discard possible changes in the 
leaf-water status, all the plants were placed indoors in 
the morning before the tests, the pot liberally watered 
and the leaves sprayed several times. Thus, all the 
leaves were fully turgid. Forty leaves from three leaf 
ranks were studied (rank 8, 10, 11). Notice that these 
ranks correspond to the main leaves of the plants. Any 
leaf showing impairment of its bilateral symmetry was 
discarded. There was no effect of rank on leaf length 
under these conditions, within the studied rank range. 
The mean leaf length was 805 + 48 ram. The typical 
ratio of maximum width to length was close to 10% 
(in accordance with data from [-16]). 

4.2. Mechan ica l  tes t  
The stem of the plant was carefully, but firmly, secured 
to a metallic framework, just beneath the leaf inser- 
tion, to avoid displacement. A pre-load was then ap- 
plied as a small weight (2.4 g) hung on the midrib. 
Then, a known load was added (as an additional 
weight) and a new equilibrium shape was reached. The 
load was then removed, to test elastic recovery. Three 
or more loading cycles were achieved on each leaf 
tested, with increasing load level ( +  2, 5, 10 g, etc.). 
Each equilibrium shape was recorded by taking a 
photograph after a lag time of 1 min (preliminary 
studies showed that no apparent displacement was 
noticeable after 30 s). A plumb bob and a scale were 
included in each photograph, and particular care was 
taken to ensure that the leaf plane was parallel with 
the scale and the focus plane of the camera. Tests of 
more or less related designs have been reported in 
[-17-19]. 

In order to study experimentally the role of the 
midrib in the overall behaviour of the structure, some 
of the leaves tested were submitted to a second set of 
loading cycles, after suppression of the lamina longit- 
udinal cohesion by lacerating it transversally (on both 

* In the case of large curvatures, the relationship between 8(C) and 8(M,) is no longer linear [19], thus dismissing Equation 1 in the case of 
finite variations, as in our problem. 
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sides of the midrib) with a razor blade. Such operation 
(leaving 1 cm large strips) does not change the self 
weight distribution along the midrib, but allows for 
testing of the midrib alone. Care was taken to proceed 
as fast as possible in the second period, to prevent 
changes in the leaf water content related to enhanced 
evaporation through the cuts. 

At the end of each experiment, the lamina and 
midrib self weight distributions were immediately 
measured by weighing cut segments using a precision 
balance. 

4.3. Form record ing  
The positions of the midrib central line were obtained 
as a sequential set of points by digitizing the photo- 
graph (mean magnification rate of 0.33), using a two- 
dimensional digitizing tablet (0.01 mm accuracy). Care 
was taken to line up the plumb bob in the photograph 
with the ordinate axis. Approximately 50-80 points 
were recorded per leaf. The sharper the curvature, the 
larger the local density of points. The accuracy (which 
estimation is detailed in [13]) was 3.8 mm (at the real 
scale) on each point within view. 

4.4. Data p rocess ing  m e t h o d s  
A brief outline of these methods has been presented in 
[20], but a far more complete description, and check, 
is developed here. 

4.4. 1. Calculational methods 
4.4.4.1. Curvilinear abscissa. The curvilinear ab- 
scissa, s, was estimated for each point as the sum of the 
upstream inter-point segments: 

i 
si = ~ [(xj - xj_ l )  z + (yj  - yj-1)2] 1/2 (3) 

j = l  

where xl, yl are coordinates within the plane of sym- 
metry of the ith point. 

4.4.1.2. Curvature. The curvature on a line is a local 
value which can be analytically defined in smooth 
curves only, and thus obviously not in a discrete series 
of points. An immediate idea is to think of fitting 
a curve (e.g. polynomial). Unfortunately, no simple 
mathematical form is able to provide a convincing fit 
for a set of maize leaves. Usual smoothing methods 
from computer aided design (CAD), e.g. spline or 
Bezier curves [21,223, are not suitable as they just 
perform interpolations, being very sensitive to local 
errors in point positioning (it should not be forgotten 
that curvature calculation requires second derivat- 
ives). Lastly, although adjusting smoothing proced- 
ures do exist (e.g. adjusting splines [21]), the choice of 
the sum of the square part of the  functional to be 
minimized is rather arbitrary, in the sense that it has 
no immediate relation to the residual error term. 
Thus, a special calculation procedure, originating 
from a suggestion in [22], has been developed and 
tuned to estimate curvature, giving rise to computer 
software. For a given current point, a centred vicinity 

is defined (the extent of which is input by the operator 
as a number of points). Then, the two principal axes of 
the set of points inside the vicinity are determined by 
diagonalization of its inertia matrix. The co-ordinates 
of all the points are recomputed in the local principal 
axes reference. Thereafter, a local fitted polynomial, P, 
is estimated by the least square method, and the order 
of the polynomial is incremented until the residual 
term (root mean square of the error) becomes less than 
an independent estimation of the mean digitizing error 
on a point position. The maximal order of the poly- 
nomial is constrained in order to leave at least six 
degrees of freedom to the residual. It should be noticed 
that the fitness criterion based on overall residual 
error, is only a global one and is not sufficient [23]. 
Therefore, the software forces the operator to a sys- 
tematic graphical inspection of the residuals before 
validation. Note also that the change to local principal 
reference axes is very important, as polynomial fitting 
is very reference dependent. Then, the curvature is 
calculated in each point, i, as: 

[d2 p(xi)/dx 2] 
C~ = {1 + [dP(xi)/dx-12} 3/2 (4) 

The sign convention Sets a positive curvature when the 
concavity is directed to the upper side of the leaf. 
Notice that the curvature calculations were limited to 
a subset of points, discarding the ones close to the 
edges of the interval to avoid border effects (a relation- 
ship between the safety margin and the size of the 
vicinity has been established empirically, which 
should of course be suitable only for conditions of 
curvature, digitizing point density and error, similar to 
these). When all these calculations are done, the cur- 
rent point is translated to the next point and the whole 
preceding procedure is reiterated. When the end of line 
has been reached, the mean and standard deviations 
are computed from the set of curvature estimates in 
each point. This last step restores the curvature "conti- 
nuity", this was by no means warranted in previous 
calculations. At the end of the computation, a file 
containing the curvilinear abscissa, s, and the corres- 
ponding mean curvature, C(s), for all the points is 
generated. 

4.4.1.3. Bending moment. The procedure for bending 
moment calculation involves the summation of 
discrete bending moments resulting from both the 
external load and the self weight (the former being 
distributed into point-wise equidistant loads) 

m=~ = ~ [ ( x j - x i )  xwj]  (5) 
j = i +  l 

where x is the point abscissa and w is the sum of the 
self weight and of an eventual additional weight acting 
on the current point. Anti-clockwise moments are set 
positive. 

4.4.1.4. Flexural suppleness. The flexural suppleness 
was calculated according to Equation 1 for each 
transition between load levels. As the digitized points 
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in two successive configurations do not usually corres- 
pond (they have no relation with given material 
points), the variations of curvature and moment have 
been calculated at the same curvilinear abscissa (using 
linear local interpolations when necessary) generating 
a file of [s, Sf(s)] pairs. Such a calculation is based on 
the assumption of pure bending (i.e. normal and shear 
strains are negligible). Since the hypothesis for negli- 
gible shear displacement is no longer valid close to the 
point of application of the external load, a safety zone 
of 15 cm in length was systematically excluded from 
analysis. Thus, the data presented here approximately 
concerns the basal first half of the leaf only. 
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4.4.2. Validation and estimation of accuracy 
Preliminary studies were conducted to test the accu- 
racy of the calculation program. As the a priori crucial 
point concerns the estimation of curvature, this is 
dealt With first. The first step is to check on the lack of 
bias. To do so, realistic sets of testing points, related to 
known curves, are required. To create them, several 
3-5 order polynomials were fitted onto a set of 
digitized leaves. Although, as yet stated, such curves 
do not have satisfactory fitting power, they neverthe- 
less provide curves with a realistic range of curvature 
changes along them. Moreover, a set of testing points 
can then be generated, as rx, ~(x) + e(x)], where x is 
the abscissa of the true set of digitized points, ~(x) is 
the ordinate polynomial estimate, and e(x) is an error 
term. The program can then be run on this testing set 
(called the bias testing set) and its results compared to 
the analytical calculation of curvature on the poly- 
nomial. Such a comparison is given in Fig. 2, and 
reveals satisfactory behaviour of the curvature calcu- 
lating program, as no bias can be detected. The second 
step is then to assess the error made when estimating 
curvatures from digitized leaves (including digitizing 
errors). The results of curvature calculations from ten 
independently digitized sets of points on the same leaf 
(making up the so-called repeatability testing set) are 
shown in Fig. 3. By a regression procedure, the mean 
error on the curvature (root mean square of the resid- 
ual) can be estimated at 1.2 x 10 .4  ram-  1 (i.e. a radius 
of curvature of approximately 8 m). This represents 
a relative error (coefficient of variation) of approxim- 
ately 2% at the peak of curvature and around 10% on 
the basal zone. Surprisingly, these results are very 
reasonable, taking into account the fact that curvature 
involves second derivatives. 

Using the same procedure as for curvature, the 
moment calculation is shown to have no bias (data not 
shown) and the mean absolute error for moment cal- 
culation is 0.095 N m m  -1 (i.e. from 0.5 to 1% of the 
moment within the studied range of moments). 

The effects of point positioning errors and point 
density changes on length calculations (s) were also 
assessed on the aforementioned repeatability testing 
set. For  the entire leaf, the standard deviation is 
5.2 ram, which represents < 0.6% error. 

The suppleness estimation error cannot be straight- 
forwardly assessed from previous error estimations of 
curvature, moment and curvilinear abscissa. Actually, 
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Figure 3 Repeatability of curvature computation (on the repeatabil- 
ity testing set). 

it introduces an additional error term related to inter- 
photograph repeatability, which can be impaired for 
example by imperfect parallelism between the leaf and 
film planes, or slightly deviated bending. In fact, the 
error in length estimation (when calculated on the two 
first unloaded configurations for each leaf) is 4.2%, 
which is much higher than the one related to the point 
positioning error. Such an error level is not tolerable. 
It would include, for a typical curvature distribu- 
tion as in Fig. 3, a maximal related error up to 
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Figure 4 Successive leaf forms during two consecutive loading-unloading cycles. Each individual curve represents the equilibrium shape of 
the leaf, for a given point-wise load (0, position of additional weight). (a) First cycle, (b) second cycle. Loading conditions: (0) unloaded (self 
weight alone), (1) 2.4 g (pre-loading), (2) 4.4 g, (3) 2.4 g, (4) 7.4 g, (5) 2.4 g. 

2.10-Smm -1 (15%). Thus, for suppleness calcu- 
lations, a subgroup of 60 loading cycles (repres- 
enting 22 leaves) displaying a mean error length of 
1% (and maximal related errors of 6.10-4 mm-1 for 
curvature and of 1 N m m - 1  for bending moments) 
has been chosen. Moreover, minimal thresholds of 
3.10 - 4 m m -  ~ for curvature variations and of 
0.5 N m m - 1  for bending moments were retained for 
the suppleness computation. 

4 .4 .3 .  S t a t i s t i c a l  a n a l y s i s  
Statistical regression, variance and covariance ana- 
lyses have been made using the general linear model 
(GLM) for SAS software [24]. The level of significance 
is usually explicitly specified as the probability of first 
type error (00 (when it is not, it means that ~ < 0.05 at 
least). 

5. Results  
Two typical sets of leaf forms, during two consecutive 
loading and unloading cycles on the same leaf, are 
shown in Fig. 4. In one set of leaf form (Fig. 4b), there 
is good immediate recovery of the overall, shape after 
unloading; a behaviour that can be called "global 
elasticity". For the other set (Fig. 4a), the cycle dis- 
plays an important residual curvature. 

Among the forty leaves tested, 59% displayed at 
least one globally elastic cycle. However, in 43% of 
these leaves, the "elastic" cycle is not the lower loading 
one; hence making the definition of a global limit of 
elasticity rather ambiguous (e.g. in Fig. 4, cycle (b) has 
an additional load 1.7 times higher than cycle (a), and 
nevertheless (b) displays global elasticity whereas 
(a) does not). Notice, lastly, that no obvious active 
plant reaction (such as for example righting move- 
ments or active drooping) can be established from the 
data. Such a conclusion was expected for such short 
term experiments, as the maize leaf (and especially the 

mature one) is not known, among botanists, to be as 
quickly reacting as is for example the sensitive Mimosa 
pudica L [8-]. 

Fig. 5a shows the characteristic profiles of bending 
moments, M~(s), along the midrib for three consecut- 
ive loading cycles within a test. Within the zone of 
interest, the bending moments are a roughly linear 
function of the curvilinear abscissa (deviations from 
linearity increase with increasing loads). This is also 
the case for the self weight related bending moment 
(Fig. 5a, curve 0). It is thus tempting to characterize 
the level of loading by the ratio of actual load to the 
self weight "natural load". This ratio is not constant 
along the leaf, as the linear regressions for the set of 
load levels do not cross one another at the moment 
origin. However, it varies very slowly within a major 
part of the studied range of s (the increase at 
s = 300 mm is less than 15%). Thus, the bending mo- 
ment ratio at the leaf basis is a good characteristic of 
the "significance" of the load levels from the "leaf 
viewpoint". In these experiments, it ranges usually 
from 1.4 (preqoad) to 2.5. A few tests were brought up 
to higher loading, and breakage occurred for load 
levels around 6-7, so that the additional loadings in 
these experiments, ranged roughly from 6 to 30% of 
the ultimate breaking load. 

It is of interest to assess the part played by self 
weight during the test (Fig. 5b). Do the large displace- 
ments induce significant variation in the self weight 
bending moments? In fact, leaf bending induces two 
crossed effects on the variation of the lever arms 
along s: 

1. Increasing lever arms in the positively inclined 
basal part due to the increase in leaning; 

2. Decreasing lever arms in the negatively inclined 
distal part due to drooping. 

Therefore, for the loading conditions used, and 
within the first half of the leaf, variation in self weight 
moments increases the absolute value of 5M= in the 
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basal  zone by less than  5%;  whereas it decreases by up 
to 35% in the distal part.  Thus,  bear ing in mind the 
above  stated constraints  abou t  curvature  accuracy,  it 
seems safe to take into account  the var ia t ion of 
self weight m o m e n t s  (a l though it is a ra ther  time- 
consuming  measurement) .  

Two  typical plots of curvature  versus curvil inear 
abscissa are shown in Fig. 6a and b. Al though it is 
evident f rom leaf observat ion,  a t tent ion should be 
paid  here, first, to the fact that  the initial form under  
self weight is far f rom being straight  (Fig. 6a, curve 0), 
with typical radii  of curva ture  ranging f rom approx-  
imately 5 0 - 6 0  cm near  the leaf base, up to 10 -20  cm 
at the peak  of curvature.  F o r  all the tests, the meas-  
ured radii of  curvature  always remain  far greater  than  
the characterist ic midr ib  thickness (which tapers  f rom 
10 m m  at the leaf base to less than  1 mm). This sup- 

2 3 6 4  

ports  the hypothesis  of  small curvature,  made  while 
defining Equa t ion  1. 

Fig. 7 plots flexural suppleness versus curvil inear 
abscissa in the cases of  "global  elasticity". The overall  
shape of the suppleness curve is very stable, displaying 
a quasi-exponent ia l  increase in suppleness with s. 
However ,  when all the curves for all the "globally 
elastic" testing cycles for all the leaves tested, are put  
together,  there is an impor t an t  inter-leaf variability. 
The  linear regression of the logar i thm of suppleness 
against  linear abscissa is significant (0~ = 0.0001), and 
its r z is 0.83 (such log t rans format ion  of suppleness 
before regression is justified here as it stabilizes the 
residual variance, see Fig. 7). Th rough  an analysis of  
slope homogene i ty  [24], no significant effect of the 
level of  loading could be established. In  opposi t ion,  
there is significant difference in slopes between ranks  
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(~ = 0.0001), with rank 10 differing from the two 
others. 

An interesting point is to assess the part  of the 
midrib in supporting the overall leaf. As yet men- 
tioned in the materials and methods, this has been 
characterized through sequential testing of: 

1. The undisturbed leaf, and 
2. The same leaf after suppression of lamina cohe- 

sion (in these tests the load levels were limited to the 
two least loading to prevent leaf damage). Fig. 8 shows 
the log transformed mean suppleness versus curvi- 
linear abscissa for the seven leaves tested. The global 
trend is, as expected, that part  of the lamina increases 

from the base to the tip. However, within this subset of 
leaves, the linearity of the log transformed relation i s  
no longer provided*. Thus slope analysis is no more 
suitable. A three way analysis of variance was, there- 
fore, performed [with a model including leaf effect, 
lamina disruption effect, curvilinear abscissa effect, 
(leaf effect x lamina disruption) and (lamina disrup- 
tion x curvilinear abscissa) first order interactions]. 
To do so, suppleness was interpolated at a given set of 
equidistant s in each individual curve (keeping the 
total number of degrees of freedom per test un- 
changed). The interaction between lamina disruption 
and curvilinear abscissa is statistically significant 
(~ = 0.0375). Moreover, a Tukey analysis of the means 
([24]) reveals that the lamina part  is not significant up 
to 200 mm, and then becomes significant. From the 
mean curves, the mean contribution of the midrib to 
the flexural behaviour of the whole leaf can also be 
quantified. It is more meaningful to express it in terms 
of part  of the flexural rigidity (although there is some 
bias related to log transformations before averaging 
and taking the inverse values, the order of magnitude 
are correct). The midrib represents more than 87% of 
the leaf rigidity within the basal quarter of the leaf, and 
it reaches 50% only at the middle of the leaf. Thus, the 
midrib greatly stiffens the leaf, especially at the places 
where bending moments  are high. 

T h e  last fact that can be extracted from the results 
goes back to the leaf form. Given the self weight 
loading (in equilibrium configuration) and the leaf 
suppleness, it is easy from Equation 1 to calculate the 
leaf curvature variation related to self weight. How- 
ever, which part of the leaf curvature can be explained 
by the so calculated elastic curvature? From the data, 
the relative difference between real leaf curvatures and 
the calculated elastic ones can be estimated as 
0.70 + 0.15 (this ratio displays no evident relationship 
with s). This means that such elastic straining of the 
mature leaf under its self weight explains only one- 
third of the leaf habit. This conclusion is a l so  sup- 
ported by the common observation that, if a maize leaf 
is rotated 180 ~ around its midrib, the leaf maintains 
a clear upward curvature, in spite of downward acting 
bending moments. The phenomena that determine 
such "natural" curvature are unknown. One may 
think of time-dependent mechanical effects such as 
creep. It is clear that the above-presented test can be 
applied perfectly to creep studies and, moreover, that 
in vivo tests are still advisable in such long term experi- 
ments. It should be added that other, more specifically 
biomechanical phenomena related to growth and ana- 
tomical maturat ion can also play a major part  [-4]. 

6 .  C o n c l u s i o n s  

An in vivo flexural test has been designed and conduc- 
ted on maize leaves. Da ta  processing is based on local 
structural definition of the longitudinal suppleness of 
the leaf, which originates in the theory of pure plane 
bending of initially curved beams. It  takes into ac- 

* Such non-log linearity seems in contradiction with the aforestated log linear relationship between suppleness and curvilinear abscissa for all 
the undisturbed leaves. In fact non-log linear suppleness distribution along the leaf is rather frequent. However, mixing of many curves from 
different leaves hides this effect, legitimating both the mean linear regression and the analysis of slopes for rank or load level effects. 

2 3 6 5  



count the large displacements that occur. A specific 
procedure for curvature and suppleness calculations 
has been designed and is methodologically discussed 
here. The crucial factor is the accuracy of point posi- 
tioning for description of the leaf form. The use of a 
photographic and two-dimensional digitizing method, 
as done in this study, is limiting for accuracy, as it 
requires selection between numerous experiments, to 
retain only those with satisfactory precision. The use 
of a three-dimensional magnetic digitizor [13] to in- 
crease the accuracy of the form measurements is pres- 
ently under development. 

The results presented here only concern the elastic 
flexural behaviour of the leaf (which could be charac- 
terized in 59% of the tested leaves). There is always an 
almost exponential increase in suppleness, from the 
base to the tip of the leaf. It is demonstrated that the 
midrib plays a major part in the bending stiffness. 
Therefore, the next step in the study of maize leaf 
mechanics will concern the modelling of this midrib as 
a composite tapered beam. The leaf habit showed that 
self weight related elastic bending strains only account 
for one-third of the actual curvature. Thus, some time- 
dependent phenomena (either creep or biologically 
dependent mechanisms) have to be studied to account 
for curvature. Lastly, and in spite of sustained effort in 
leaf material standardization, it should be said that an 
important quantitative variability in leaf flexural char- 
acteristics is displayed. 
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Appendix: Definitions of the main 
biological terms used 

Growth and anatomical maturation. The growth of 
a body means, in biology, irreversible strains related 
to a concomitant increase in its (dry) matter mass. At 
the end of the growth process, there are several chan- 
ges in the internal structure (anatomy), particularly 
the spatially located deposition of a particular set of 
polymers called lignins [15]. This maturation has 
been shown in trees to cause internal stress fields 
which can be the mover of biologically controlled 
reorientation of growth axes [4]. 
Leaf rank. The number of the leaf within the sequence 
of leaf emergence (the first leaf to emerge has rank 
one).  

Midrib. A central, thickened and "V-shaped" ridge 
(rib) within the leaf. 
Phenological age. The main difficulty in assessing the 
age of a plant comes from the fact that its development 
kinetics can vary, first of all with temperature. Thus 
the "true" age of the plant is better assessed by mor- 
phological events like leaf appearance, flowering, etc. 
Turgid. A plant organ is said to be turgid when the 
hydrostatic pressure inside its cells (called the turgor 
pressure) is positive. Such pressure is explained by 
elastic reaction of the cell wall to volumetric strains 
related to water flowing into the cell. Such water flow 
is driven by water potential differences between the 
cell content and the surrounding solution, and it stops 
when the turgor pressure equilibrates to the osmotic 
one. "Fully turgid" means that turgot pressure is 
maximal. 


